
CMPT 295 Mini-Project: Insertion Sort
Performance Analysis

Introduction & Implementation

I evaluated the performance of Insertion Sort, a classic  algorithm known for its

efficiency on small or nearly-sorted arrays and excellent memory locality. I compared three

implementations against std::sort:

1. insertion_sort_arr (Baseline): Standard C++ using raw pointers (int*) and a

while loop.

2. insertion_sort_vec (Vector): Uses std::vector<int>& and indexing to test

abstraction overhead.

3. insertion_sort_optimized: Uses std::upper_bound (Binary Search) for

 lookups and memmove for block memory transfers, eliminating the inner loop

branch.

4. std::sort: The C++ Standard Library's Introsort as a reference.

Evaluation Method

Benchmarks were written in C++ (main.cpp) and compiled with g++ 11.4.0 at -O0, -O2, and

-O3. Execution time was measured using std::chrono::high_resolution_clock on

input sizes up to 50,000 integers. Patterns included Sorted, Reverse, Random, and Duplicates.

Metrics: Wall-clock time (avg of 5 trials), perf stat -d counters (cycles, instructions,

branches), and memory usage.

Environment: All tests ran on the same machine in a single session with background

apps minimized.

Results

Optimization Level Comparison (50k elements)

Algorithm Optimization
Sorted

(ms)

Reverse

(ms)

Random

(ms)

insertion_sort_arr -O0 0.09 1710.69 852.03

-O2 0.03 288.51 142.75

-O3 0.03 282.54 140.72

insertion_sort_optimized -O0 0.04 58.66 32.47

-O2 0.01 56.33 29.41

-O3 0.01 54.64 28.08

O(N )2

O(log i)



std::sort -O0 4.92 3.91 8.77

-O2 0.31 0.22 2.00

-O3 0.27 0.20 1.94

Algorithm Performance Comparison (-O3, 50k elements)

Algorithm
Sorted

(ms)

Reverse

(ms)

Random

(ms)

Duplicates

(ms)

insertion_sort_arr 0.026 282.54 140.72 118.16

insertion_sort_vec 0.033 367.34 181.86 152.07

insertion_sort_optimized 0.011 54.64 28.08 22.47

std::sort 0.271 0.198 1.94 0.62

Key Observations: The baseline insertion_sort_arr saw a 6x speedup from -O0 to -O2
as variables moved from stack to registers. The insertion_sort_optimized version was

resilient to optimization levels (only ~10% speedup) because memmove is always optimized.

On reverse data (worst case), the optimized version (54ms) was 5.1x faster than the baseline

(282ms) by replacing the element-by-element shift with memmove. The vector version was

consistently slower due to bounds-checking overhead.

Analysis (perf & Assembly)

Metric -O0 -O2 -O3

Instructions 1.33 Trillion 223 Billion 223 Billion

Cycles 334 Billion 38 Billion 37.6 Billion

IPC 3.98 5.84 5.95

Branch Misses 14.7 Million 36.9 Million 12.1 Million

Performance Counters: The 6x instruction reduction from -O0 to -O2 explains the speedup.

L1 cache misses remained constant (~2B), confirming memory access is the bottleneck. -O3
achieved the lowest branch misses (12.1M) and a high IPC of ~5.95, indicating aggressive loop

optimization and superscalar execution.

The largest input (50k ints ≈ 200 KB) fits entirely in the L3 cache of my machine, which is why

the LLC miss rate stayed near zero. Most memory stalls came from L1 churn during the

repeated backward shifts in the baseline algorithm. Since insertion sort repeatedly iterates

through the same contiguous array region, the hardware prefetcher can keep up reasonably

well, but the O(n²) nature still causes frequent L1 evictions. The optimized version reduces

these repeated passes, leading to fewer L1 misses per element.



Assembly Observations: Using Compiler Explorer and files sorts_o0.S to sorts_o3.S, I

observed that the baseline generated a tight loop with a conditional jump (cmp, jge) that is

hard to predict on random data. The optimized version replaced this loop with memmove
(using SIMD instructions like AVX), removing the branch entirely.

None of the insertion sort loops were vectorized by the compiler, which is expected because

each iteration depends on the result of the previous (a[j] > key and j--). This loop-carried

dependency prevents automatic SIMD parallelization. The only SIMD usage in this project

came from the underlying memmove implementation, which on my machine likely uses 128-

or 256-bit wide transfers. This explains why the optimized version benefits from higher

memory bandwidth while the baseline versions remain scalar.

Conclusion

This project demonstrated that Insertion Sort can be optimized to be 5x faster by changing

how it moves data. The memmove optimization transforms a "branch-heavy" task into a

"bandwidth-heavy" task, which modern CPUs handle much better. The optimized version

avoids the branch misprediction penalties that hammer the baseline on random/reverse data.

While std::sort remains fastest for large random sets, the optimized insertion sort is

excellent for small or nearly-sorted arrays. Writing hardware-friendly code (predictable

branches, linear memory) is just as critical as algorithm choice.


