CMPT 295 Mini-Project: Insertion Sort
Performance Analysis

Introduction & Implementation

| evaluated the performance of Insertion Sort, a classic O(Nz) algorithm known for its
efficiency on small or nearly-sorted arrays and excellent memory locality. | compared three
implementations against std: : sort:

1.insertion_sort_arr (Baseline): Standard C++ using raw pointers (int*) and a
while loop.

2.insertion_sort_vec (Vector): Uses std: :vector<int>& and indexing to test
abstraction overhead.

3.insertion_sort_optimized: Uses std: :upper_bound (Binary Search) for
O(log z) lookups and memmove for block memory transfers, eliminating the inner loop
branch.

4. std: :sort: The C++ Standard Library's Introsort as a reference.

Evaluation Method

Benchmarks were written in C++ (main.cpp) and compiled with g++ 11.4.0 at -00, -02, and
-03. Execution time was measured using std: :chrono: :high_resolution_clock on
input sizes up to 50,000 integers. Patterns included Sorted, Reverse, Random, and Duplicates.

o Metrics: Wall-clock time (avg of 5 trials), perf stat -d counters (cycles, instructions,
branches), and memory usage.

« Environment: All tests ran on the same machine in a single session with background
apps minimized.

Results

Optimization Level Comparison (50k elements)

. L. Sorted Reverse Random
Algorithm Optimization
(ms) (ms) (ms)
insertion_sort_arr -00 0.09 1710.69 852.03
-02 0.03 288.51 142.75
-03 0.03 282.54 140.72
insertion_sort_optimized -00 0.04 58.66 32.47
-02 0.01 56.33 29.41

-03 0.01 54.64 28.08



std: :sort -00 4.92 3.91 8.77
-02 0.31 0.22 2.00

-03 0.27 0.20 1.94

Algorithm Performance Comparison (-O3, 50k elements)

) Sorted Reverse Random Duplicates
Algorithm
(ms) (ms) (ms) (ms)
insertion_sort_arr 0.026 282.54 140.72 118.16
insertion_sort_vec 0.033 367.34 181.86 152.07
insertion_sort_optimized 0.011 54.64 28.08 22.47
std::sort 0.271 0.198 1.94 0.62

Key Observations: The baseline insertion_sort_arr saw a 6x speedup from -00 to -02
as variables moved from stack to registers. The insertion_sort_optimized version was
resilient to optimization levels (only ~10% speedup) because memmove is always optimized.
On reverse data (worst case), the optimized version (54ms) was 5.1x Faster than the baseline
(282ms) by replacing the element-by-element shift with memmove. The vector version was
consistently slower due to bounds-checking overhead.

Analysis (perf & Assembly)

Metric -00 -02 -03

Instructions 1.33 Trillion 223 Billion 223 Billion
Cycles 334 Billion 38 Billion 37.6 Billion
IPC 3.98 5.84 5.95

Branch Misses 14.7 Million  36.9 Million  12.1 Million

Performance Counters: The 6x instruction reduction from -00 to -02 explains the speedup.
L1 cache misses remained constant (~2B), confirming memory access is the bottleneck. -03
achieved the lowest branch misses (12.1M) and a high IPC of ~5.95, indicating aggressive loop
optimization and superscalar execution.

The largest input (50k ints ~ 200 KB) fits entirely in the L3 cache of my machine, which is why
the LLC miss rate stayed near zero. Most memory stalls came from L1 churn during the
repeated backward shifts in the baseline algorithm. Since insertion sort repeatedly iterates
through the same contiguous array region, the hardware prefetcher can keep up reasonably
well, but the O(n?) nature still causes frequent L1 evictions. The optimized version reduces
these repeated passes, leading to fewer L1 misses per element.



Assembly Observations: Using Compiler Explorer and files sorts_o00.Sto sorts_03.S, |
observed that the baseline generated a tight loop with a conditional jump (cmp, jge) that is
hard to predict on random data. The optimized version replaced this loop with memmove
(using SIMD instructions like AVX), removing the branch entirely.

None of the insertion sort loops were vectorized by the compiler, which is expected because
each iteration depends on the result of the previous (a[j] > key and j--). This loop-carried
dependency prevents automatic SIMD parallelization. The only SIMD usage in this project
came from the underlying memmove implementation, which on my machine likely uses 128-
or 256-bit wide transfers. This explains why the optimized version benefits from higher
memory bandwidth while the baseline versions remain scalar.

Conclusion

This project demonstrated that Insertion Sort can be optimized to be 5x faster by changing
how it moves data. The memmove optimization transforms a "branch-heavy" task into a
"bandwidth-heavy" task, which modern CPUs handle much better. The optimized version
avoids the branch misprediction penalties that hammer the baseline on random/reverse data.
While std: : sort remains fastest for large random sets, the optimized insertion sort is
excellent for small or nearly-sorted arrays. Writing hardware-friendly code (predictable
branches, linear memory) is just as critical as algorithm choice.



